Extended Ginzburg-Landau formalism for two-band superconductors.

نویسندگان

  • A A Shanenko
  • M V Milošević
  • F M Peeters
  • A V Vagov
چکیده

Recent observation of unusual vortex patterns in MgB(2) single crystals raised speculations about possible "type-1.5" superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bands-and does not support the "type-1.5" behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/T(c) parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→T(c). The extended version of the two-band GL formalism improves the validity of GL theory below T(c) and suggests revisiting the earlier calculations based on the standard model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Statistical Physics (PHY831): Part 4: Ginzburg-Landau theory, modeling of dynamics and scaling in complex systems

London theory was developed by Fritz London in 1935 to describe the Meissner effect. This theory leads to the introduction of the penetration depth to describe the extent of magnetic field penetration, λ into type I superconductors. The penetration depth is also important in type II superconductors and describes the extent of flux penetration near vortices as well as at surfaces. Prior to his s...

متن کامل

Fluctuations in Superconductors using Landau-Ginzburg Theory

In this paper, we study the fluctuations in superconductors in the framework of Landau-Ginzurg theory. First, we review the formulation of LG theory and derive the LG equations. The we calculate the fluctuation contribution to the saddle point heat capacity, both inside and outside the immediate vicinity of the transition point. Outside the immediate vicinity, we follow the Gaussian integral ca...

متن کامل

Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity

The initial-boundary value problem for the time-dependent Ginzburg-Landau equa, tions that model the macroscopic behavior of superconductors is considered. The convergence of finite-dimensional, semidiscrete Galerkin approximations is studied as is a fully-discrete scheme. The results of some computational experiments are presented. Keywords-Superconductivity, Timedependent Ginzburg-Landau equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 106 4  شماره 

صفحات  -

تاریخ انتشار 2011